Со стремительным развитием технологий искусственного интеллекта (ИИ) в последние годы многие стали задаваться вопросом о том, как эти самые технологии смогут помочь в решении одной из самых серьезных угроз, которая уже нависла над человечеством – глобальным изменением климата? Новая статья, подготовленная одними из ведущих специалистов в области разработки искусственного интеллекта и опубликованная в онлайн-репозитории arXiv.org пытается ответить на этот вопрос, предлагая несколько примеров того, как машинное обучение будет способно предотвратить закат нашей цивилизации.

Предложенные способы варьируются от использования ИИ и спутниковых технологий для более эффективного мониторинга обезлесения, до разработки новых материалов, которые смогут заменить сталь и цемент (на их производство приходится до 9 процентов выбросов парниковых газов в атмосферу). Несмотря на такое разнообразие, в своей статье специалисты раз за разом возвращаются к более широким возможностям использования подобных технологий. Особенно на этом фоне выделяются возможности использования технологии машинного зрения для мониторинга окружающей среды; проведение больших анализов данных для определения неэффективности производств с высоким уровнем выбросов вредных веществ в атмосферу; а также использование ИИ для разработки новых более эффективных моделей систем, вроде наших климатических моделей, благодаря которым мы сможем лучше прогнозировать и готовиться к будущим изменениям.

Авторы статьи, в числе которых в том числе британский исследователь искусственного интеллекта, основатель и исполнительный директор компании DeepMind Демис Хассаби, лауреат премии Тьюринга и один из «отцов глубокого обучения» Йошуа Бенжио, а также соучредитель Google Brain — исследовательского проекта Google по изучению искусственного интеллекта на основе глубокого обучения — Эндрю Ын говорят, что ИИ может оказать «неоценимую помощь» в минимизации самых худших последствий глобального изменения климата, но добавляют, что эта технология не является «серебряной пулей» — единственным средством ото всех проблем. По их мнению, в этом вопросе должны принимать непосредственное активное участие политические силы.

«Одной лишь технологии недостаточно. Технологии, способные снизить последствия климатических изменений были доступны уже в течение многих лет, однако в значительной степени и нужном масштабе они к сожалению, не были адаптированы обществом. И хотя мы надеемся, что машинный интеллект сможет оказаться полезным в снижении затрат, связанных с использованием методов, направленных на снижение последствий климатических изменений, человечество также должно принять в этом активное участие», — пишут авторы нового исследования.

В общей сложности в статье рассматривается сразу несколько сфер, в которых технологии машинного обучения могли бы найти свое применение, категоризованных по временным рамкам их возможного потенциала использования, объясняемого тем, достаточно ли развита данная технология. Ниже можно ознакомиться с этим списком.

Искусственный интеллект позволит повысить эффективность систем электроснабжения

Если в будущем человечество планирует положиться на большее количество источников возобновляемой энергии, коммунальным предприятиям потребуются способы, позволяющие более эффективным образом предсказывать и рассчитывать те объемы энергии, которые нам действительно будут необходимы в использовании. Причем эти вычисления должны будут происходить в реальном времени и в течение всего периода работы этих предприятий.

Уже разработаны алгоритмы, способные прогнозировать спрос на энергию, однако эффективность этих алгоритмов может быть еще улучшена за счет внесения в расчеты таких факторов, как особенности климата тех или иных регионов, а также особенности ведения хозяйственной деятельности. Попытки сделать специфику работы этих алгоритмов более понятной также позволит операторам коммунальных предприятий более точно интерпретировать результаты их анализа и использовать их при планировании, выбирая наиболее оптимальное время для запуска этих источников возобновляемой энергии.

Искусственный интеллект поможет в открытии новых материалов

Ученым необходимо разработать новые материалы для более эффективного производства, хранения и использования энергии, однако, как правило, процесс открытия и разработки новых материалов очень медлителен и не всегда успешен. Технологии машинного обучения позволят ускорить процесс поиска, разработки и усовершенствования новых формул с желаемыми свойствами.

Возможно, это приведет к разработке, например, нового вида топлива, условно назовем его «солнечным», которое сможет сохранять в себе энергию солнечного света; позволит создать новый и очень эффективный абсорбент углекислого газа или строительные материалы, при производстве которых будет выделяться меньше углеродов. Такие материалы однажды смогут заменить сталь и бетон, при производстве которых в атмосферу выделяется почти 10 процентов от общего объема мировых выбросов парниковых газов.